

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
Instruction plan : Java Enterprise Developer Certification (JEDC)

Course Overview
[bookmark: _GoBack]The Java Enterprise Developer Certification (JEDC) course is designed to prepare students for enterprise-level Java development. This course covers Java EE architecture, backend development, web applications, RESTful services, and database integration. By focusing on scalable and secure enterprise solutions, the JEDC program equips students with the skills needed to develop, deploy, and manage applications in a business environment.

Course Objectives
By the end of this course, students will be able to:
1. Develop enterprise applications using Java EE architecture.
2. Implement secure and scalable web applications with Servlets and JSP.
3. Create RESTful and SOAP-based web services.
4. Manage data integration using Java Persistence API (JPA).
5. Handle asynchronous processing with Enterprise JavaBeans (EJB).
6. Implement security standards for enterprise applications.
7. Deploy Java applications in containerized environments like Docker and Kubernetes.

Module Breakdown with STAR Examples
Module 1: Introduction to Java EE Architecture
· Objective: Understand the fundamentals of Java EE and the layered architecture for enterprise applications.
· Topics:
· Overview of Java EE and its Components
· Multi-Tier Architecture (Presentation, Business, Data)
· Java EE Containers and Application Servers (e.g., Tomcat, WildFly)
· Learning Activity: Set up a Java EE environment and deploy a simple web application.
· Assignment: Develop a basic Java EE application with a multi-tier structure.
STAR Example:
· Situation: A financial institution needs a structured backend for handling customer data across multiple departments.
· Task: Design a Java EE-based backend that separates concerns across multiple layers.
· Action: Implement a multi-tier architecture, with separate layers for business logic, data management, and user interface.
· Result: Achieved a modular backend that supports scalability and easy maintenance, aligning with the company’s data management needs.

Module 2: Web Development with Servlets and JSP
· Objective: Develop dynamic web applications using Java Servlets and JavaServer Pages (JSP).
· Topics:
· HTTP Request-Response Model
· Servlet Lifecycle and JSP Basics
· Session Management and Form Handling
· Learning Activity: Create a login and session management system using Servlets and JSP.
· Assignment: Build a simple e-commerce storefront with Servlets handling backend requests and JSP for the frontend.
STAR Example:
· Situation: An online retailer needs a dynamic web interface for customers to browse products and place orders.
· Task: Create a web application that handles product display, cart management, and order processing.
· Action: Develop Servlets for backend processing and JSP for the frontend, managing user sessions for cart and order handling.
· Result: The retailer gained a responsive, dynamic storefront, enabling real-time product browsing and streamlined checkout.

Module 3: RESTful and SOAP Web Services
· Objective: Implement web services for communication between applications and platforms.
· Topics:
· RESTful API Design and Best Practices
· SOAP Web Services with JAX-WS
· JSON and XML Data Formats
· Learning Activity: Develop a RESTful service to manage user accounts and integrate it with a front-end application.
· Assignment: Create a SOAP-based web service for processing orders and integrate it with a Java EE application.
STAR Example:
· Situation: A logistics company needs to expose its tracking system as a web service for third-party integrations.
· Task: Develop a RESTful API to allow external applications to check shipment statuses.
· Action: Design RESTful endpoints for shipment data retrieval and updates, following best practices for API security.
· Result: Enabled real-time access to tracking information for partners, improving collaboration and visibility.

Module 4: Data Persistence with Java Persistence API (JPA)
· Objective: Use JPA to manage data storage, retrieval, and relationships within databases.
· Topics:
· JPA Entity Mappings and Annotations
· Relationships (One-to-One, One-to-Many, Many-to-Many)
· Querying with JPQL and Criteria API
· Learning Activity: Set up a MySQL database, define JPA entities, and perform CRUD operations.
· Assignment: Create a data access layer using JPA for an employee management system with relationships between tables.
STAR Example:
· Situation: A healthcare provider needs a secure, scalable database to manage patient and appointment data.
· Task: Implement a data access layer that handles patient records, appointments, and provider relationships.
· Action: Use JPA to create entities for each table, establish relationships, and write JPQL queries to manage patient data.
· Result: The healthcare provider gained a streamlined, secure database structure for managing complex data relationships and patient history.

Module 5: Enterprise JavaBeans (EJB) and Asynchronous Processing
· Objective: Learn to use EJB for transaction management and asynchronous processing in enterprise applications.
· Topics:
· Types of EJB (Session Beans, Message-Driven Beans)
· Asynchronous Method Invocation
· Transaction Management with EJB
· Learning Activity: Implement a Session Bean to handle business logic for a transaction-based service.
· Assignment: Build a messaging service with asynchronous processing using Message-Driven Beans.
STAR Example:
· Situation: A banking application needs to handle multiple transactions and background processes without affecting user experience.
· Task: Implement an asynchronous processing system to handle transactions and notifications.
· Action: Use EJB with Message-Driven Beans to manage background processes asynchronously and Session Beans for transaction control.
· Result: Improved application responsiveness and processing efficiency, reducing wait times and improving customer satisfaction.

Module 6: Security in Java EE Applications
· Objective: Implement security measures in Java EE applications to protect data and restrict access.
· Topics:
· Authentication and Authorization (JAAS, Role-Based Access Control)
· SSL/TLS for Secure Communication
· Securing Web Applications with Filters
· Learning Activity: Set up role-based access for a Java EE application using JAAS.
· Assignment: Secure a Java EE application by implementing HTTPS, user authentication, and role-based permissions.
STAR Example:
· Situation: An insurance company needs to secure its online application portal to protect client data.
· Task: Implement role-based access control and secure data in transit.
· Action: Use JAAS for user authentication, configure role-based permissions, and implement SSL/TLS for encrypted communication.
· Result: Enhanced data security and compliance, protecting sensitive client information and meeting regulatory requirements.

Module 7: Deploying Java EE Applications in Containerized Environments
· Objective: Deploy and manage Java applications in containers for scalability and portability.
· Topics:
· Container Basics with Docker
· Dockerizing Java EE Applications
· Kubernetes for Orchestration and Scaling
· Learning Activity: Dockerize a Java EE application and deploy it on a Kubernetes cluster.
· Assignment: Deploy a Java EE application in a containerized environment, enabling load balancing and auto-scaling.
STAR Example:
· Situation: A SaaS provider needs a portable deployment solution to ensure consistency across development, testing, and production.
· Task: Use containers to deploy Java EE applications in a scalable, consistent environment.
· Action: Dockerize the application, configure container networking, and deploy it to Kubernetes for orchestration.
· Result: Achieved seamless application deployment across environments with scalability and easy maintenance.

Conclusion
The Java Enterprise Developer Certification (JEDC) course provides in-depth training in building and deploying Java EE applications, from backend services to web applications and containerized environments. By completing hands-on assignments and working through STAR examples, students will develop expertise in enterprise-level Java development, equipping them with skills for real-world applications in the corporate world.

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




